
The parity bits of  linear block codes are linear 
combination of the message. Therefore, we can 

represent  the encoder by a linear system 
described by matrices.  

 



Basic Definitions 
 Linearity:  

 

 where  m is a k-bit information sequence  
   c is an n-bit codeword. 

      is a bit-by-bit mod-2 addition without carry 

 Linear code: The sum of any two codewords is a 
codeword. 

 Observation: The all-zero sequence is a codeword in 
every  

 linear block code. 

     then   

      and          If
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Basic Definitions (cont’d) 
 Def: The weight of a codeword ci , denoted by w(ci), is the 

 number of of nonzero elements in the codeword. 

 Def: The minimum weight of a code, wmin, is the smallest  
 weight of the nonzero codewords in the code. 

 Theorem: In any linear code, dmin = wmin 

 
 Systematic codes 

 

 

 Any linear block code can be put in systematic form 

n-k 

check bits 

k 

information bits 



 linear Encoder. 
By linear transformation  

  

c =m ⋅G =m0g0 + m1g0 +……+ mk-1gk-1  

 The code C is called a k-dimensional subspace. 

G is called a generator matrix of the code. 

Here G is a k ×n matrix of rank k of elements from 
GF(2), gi is the i-th row vector of G.  

The rows of G are linearly independent since G is 
assumed to have rank k.  

 

 



Example:  
 
(7, 4) Hamming code over GF(2)  

The encoding equation for this code is given by  

   c0 = m0 

c1 = m1 

c2 = m2 

c3 = m3 

c4 = m0 + m1 + m2 

c5 = m1 + m2 + m3 

c6 = m0 + m1 + m3 



Linear Systematic Block Code: 
An (n, k) linear systematic code is completely 

specified by a k × n generator matrix of the 
following form. 

 

 

 

 

 

where Ik  is the k × k identity matrix. 

 

 



Linear Block Codes 
 the number of codeworde is 2k since there are 2k distinct 

messages. 

 The set of vectors {gi} are linearly independent since we 
must have a set of unique codewords. 

 linearly independent vectors mean that no vector gi can be 
expressed as a linear combination of the other vectors. 

 These vectors are called baises  vectors of the vector space C. 

 The dimension of this  vector space is the number of the 
basis vector which are k. 

 Gi  є C the rows of G are all legal codewords. 

 



Hamming  Weight 
the minimum hamming distance of a linear block code 

is equal to the minimum hamming weight of the 
nonzero code vectors. 

Since  each gi єC ,we must have Wh(gi) ≥ dmin this a 

necessary condition but not sufficient. 

 

Therefore, if the hamming weight of one of the rows of 
G is less than dmin,  dmin is not correct or G not 
correct. 

 



Generator Matrix 
 All 2k codewords can be generated from a set of k 

linearly independent codewords. 

 The simplest choice of this set is the k codewords 
corresponding to the information sequences that have 
a single nonzero element.  

 Illustration: The generating set for the (7,4) code: 

1000 ===> 1101000 

0100 ===> 0110100 

0010 ===> 1110010 

0001 ===> 1010001  



Generator Matrix (cont’d) 
 Every codeword is a linear combination of these 4 

codewords. 

 That is: c = m G, where 

 

 

 

 

 

 

 Storage requirement reduced from 2k(n+k) to k(n-k). 
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Parity-Check Matrix 
For G = [ P | Ik ], define the matrix  H = [In-k | P

T] 

(The size of H is (n-k)xn). 

It follows that GHT = 0. 

Since c = mG, then cHT = mGHT = 0. 
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Encoding Using H Matrix 
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Encoding Circuit 
 



The Encoding Problem (Revisited) 
 Linearity makes the encoding problem a lot easier, yet: 

 How to construct the G (or H) matrix of a code of 
minimum distance dmin? 

  The general answer to this question will be attempted 
later. For the time being we will state the answer to a 
class of codes: the Hamming codes. 



Hamming Codes 
 Hamming codes constitute a class of single-error 

correcting codes defined as: 

n = 2r-1, k = n-r, r > 2 

 The minimum distance of the code dmin = 3 

 Hamming codes are perfect codes. 

 Construction rule: 

 The H matrix of a Hamming code of order r has as its 
columns all non-zero r-bit patterns.  

 Size of H: r x(2r-1)=(n-k)xn 



Decoding 
 Let c be transmitted and r be received, where 

   r = c + e 

 e = error pattern = e1e2..... en, where 

 

 

 The weight of e determines the number of errors. 

 If the error pattern can be determined, decoding can 
be achieved by: 

   c = r + e 
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Decoding (cont’d) 
Consider the (7,4) code. 

 (1) Let  1101000 be transmitted and 1100000 be 
received. 

       Then: e = 0001000 ( an error in the fourth location) 

 (2) Let r = 1110100. What was transmitted? 

        c        e 

  #2 0110100  1000000 

  #1 1101000  0011100 

  #3 1011100  0101000 

  The first scenario is the most probable. 



Standard Array 
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Standard Array (cont’d) 
1. List the 2k codewords in a row, starting with the all-zero 

codeword c0. 

2. Select an error pattern e1 and place it below c0. This 
error pattern will be a correctable error pattern, 
therefore it should be selected such that: 

 (i) it has the smallest weight possible (most probable 
error) 

 (ii) it has not appeared before in the array. 

3. Repeat step 2 until all the possible error patterns have 
been accounted for. There will always be 2n / 2k = 2 n-k 

rows in the array. Each row is called a coset. The leading 
error pattern is the coset leader. 



Standard Array Decoding 
 For an (n,k) linear code, standard array decoding is 

able to correct exactly 2n-k error patterns, including the 
all-zero error pattern. 

 Illustration 1: The (7,4) Hamming code 

 # of correctable error patterns = 23 = 8 

 # of single-error patterns =  7 

 Therefore, all single-error patterns, and only single-
error patterns can be corrected. (Recall the Hamming 
Bound, and the fact that Hamming codes are perfect.  

  



Standard Array Decoding (cont’d) 
Illustration 2: The (6,3) code defined by the H matrix:  
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Standard Array Decoding (cont’d) 
 Can correct all single errors and one double error 

pattern 

 000000 110001 101010 011011 011100 101101 110110 000111

000001 110000 101011 011010 011101 101100 110111 000110

000010 110011 101000 011001 011110 101111 110100 000101

000100 110101 101110 011111 011000 101001 110010 000011

001000 111001 100010 010011 010100 100101 111110 001111

010000 100001 111010 001011 001100 111101 100110 010111

100000 010001 001010 111011 111100 001101 010110 100111

100100 010101 001110 111111 111000 001001 010010 100011



The Syndrome 
 Huge storage memory (and searching time) is required 

by standard array decoding. 

 Define the syndrome  
s = vHT = (c + e) HT = eHT 

 The syndrome depends only on the error pattern and 
not on the transmitted codeword. 

 Therefore, each coset in the array is associated with a 
unique syndrome. 



The Syndrom (cont’d) 
 

 
Error Pattern Syndrome

0000000 000
1000000 100
0100000 010
0010000 001
0001000 110
0000100 011
0000010 111
0000001 101



Syndrome Decoding 
Decoding Procedure: 

1. For the received vector v, compute the syndrome s = vHT. 

2. Using the table, identify the error pattern e. 

3. Add e to v to recover the transmitted codeword c. 

Example: 

 v = 1110101   ==>      s = 001        ==>     e = 0010000  

    Then,  c = 1100101 

 Syndrome decoding reduces storage memory from nx2n 
to 2n-k(2n-k). Also, It reduces the searching time 
considerably. 



Decoding of Hamming Codes 
 Consider a single-error pattern e(i), where i is a number 

determining the position of the error. 

 s = e(i) HT = Hi
T = the transpose of the ith column of H. 

 Example:  
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Decoding of Hamming Codes 
(cont’d) 
 That is, the (transpose of the) ith column of H is the 

syndrome corresponding to a single error in the ith 
position. 

 Decoding rule: 

 1. Compute the syndrome s = vHT 

 2. Locate the error ( i.e. find i for which sT = Hi) 

 3. Invert the ith bit of v.   



Hardware Implementation 
 Let  v = v0  v1  v2  v3  v4  v5  v6   and s = s0 s1 s2 

 From the H matrix: 

 s0 = v0 + v3 + v5 + v6  

 s1 = v1 + v3 + v4 + v5 

 s2 = v2 + v4 + v5 + v6  

 From the table of syndromes and their corresponding 
correctable error patterns, a truth table can be 
construsted. A combinational logic circuit with s0 , s1 , 
s2 as input and  e0 , e1 , e2 , e3 , e4 , e5 , e6  as outputs 
can be designed. 



Decoding Circuit for the (7,4) HC 
  

v rather than r 


